【图像压缩】行程编码(RLE)图像压缩【含Matlab源码 404期】

   日期:2024-12-26    作者:nwp91 移动:http://ljhr2012.riyuangf.com/mobile/quote/40496.html

🚅座右铭:行百里者,半于九十。

🏆代码获取方式
CSDN Matlab武动乾坤—代码获取方式

更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版

⛳️关注CSDN Matlab武动乾坤,更多资源等你来

1 行程编码概述(RLE
在图像压缩上,行程编码(RLE)一般用于压缩二值化图像,因为它是基于重复的压缩算法,比如
二维图像降维后(压缩前:0 0 0 0 0 255 255 255 0 0 255
行程编码压缩后:5 0 3 255 2 0 1 255
(压缩格式为:数量+像素+数量+像素…
如果有大量的像素连续重复,那么压缩率会更高。
编码是方法建立在图像统计特性的基础上的。例如,在传真通信中的文件大多是二值图像,即每个像素的灰度值只有0和1两种取值。将一行中颜色值相同的相邻象素用一个计数值和该颜色值来代替。例如aaabccccccddeee可以表示为3a1b6c2d3e,即有3个a,1个b,6个c,2个d,3个e。如果一幅图象是由很多块颜色相同的大面积区域组成,那么采用行程编码的压缩效率是惊人的。然而,该算法也导致了一个致命弱点,如果图象中每两个相邻点的颜色都不同,用这种算法不但不能压缩,反而数据量增加一倍。因此对有大面积色块的图像用行程编码效果比较好。
行程编码的可行性讨论:行程编码的压缩方法对于自然图片来说是不太可行的,因为自然图片像素点错综复杂,同色像素连续性差,如果硬要用行程编码方法来编码就适得其反,图像体积不但没减少,反而加倍。鉴于计算机桌面图,图像的色块大,同色像素点连续较多,所以行程编码对于计算机桌面图像来说是一种较好的编码方法。

2 图像压缩
2.1 图像压缩定义
图像压缩就是对图像数据按照一定的规则进行变换和组合,用尽可能少的数据量来表示影像,形象的说,就是对影像数据的瘦身。

2.2 图像压缩的必要性
多媒体数据的显著特点就是数据量非常大。例如,一张彩色相片的数据量可达10MB;视频影像和声音由于连续播放,数据量更加庞大。这对计算机的存储以及网络传输都造成了极大的负担。

2.3 图像压缩的可行性
1)原始图像数据是高度相关的,存在很大的冗余。数据冗余造成比特数浪费,消除这些冗余可以节约码字,也就是达到了数据压缩的目的。大多数图像内相邻像素之间有较大的相关性,这称为空间冗余。序列图像前后帧内相邻之间有较大的相关性,这称为时间冗余。

2)若用相同码长来表示不同出现概率的符号也会造成比特数的浪费,这种浪费称为符号编码冗余。如果采用可变长编码技术,对出现概率高的符号用短码字表示,对出现概率低的符号用长码字表示,这样就可大大消除符号编码冗余。再次,有些图像信息(如色度信息、高频信息)在通常的视感觉过程中与另外一些信息相比来说不那么重要,这些信息可以认为是心里视觉冗余,去除这些信息并不会明显地降低人眼所感受到的图像质量,因此在压缩的过程中可以去除这些人眼不敏感的信息,从而实现数据压缩。

function yc
%%行程编码算法
%例如aaabccccccddeee才可以表示为3a1b6c2d3e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%读图
I=imread(‘Lena.jpg’);
[m n l]=size(I);
fid=fopen(‘yc.txt’,‘w’);
%yc.txt是行程编码算法的灰度级及其相应的编码表
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%行程编码算法

sum=0;
for k=1:l
for i=1:m
num=0;
J=[];
value=I(i,1,k);
for j=2:n
if I(i,j,k)value
num=num+1;
%统计相邻像素灰度级相等的个数
if j
n
J=[J,num,value];
end
else J=[J,num,value];
%J的形式是先是灰度的个数及该灰度的值
value=I(i,j,k);
num=1;
end
end
col(i,k)=size(J,2);
%记录Y中每行行程行程编码数
sum=sum+col(i,k);
Y(i,1:col(i,k),k)=J;
%将I中每一行的行程编码J存入Y的相应行中
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%输出相关数据
[m1,n1,l1]=size(Y);
disp(‘原图像大小:’)
whos(‘I’);
disp(‘压缩图像大小:’)
whos(‘Y’);
disp(‘图像的压缩比:’);
disp(mnl/sum);

1 matlab版本
2014a

2 参考文献
[1] 王常远,彭代渊,易雄书.一种基于行程编码和小波变换的图像压缩编码算法[J].计算机应用. 2007,(S1)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长


特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


举报收藏 0评论 0
0相关评论
相关最新动态
推荐最新动态
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号