一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型

   日期:2024-12-26    作者:hentongxj 移动:http://ljhr2012.riyuangf.com/mobile/quote/24674.html

这几年,各种新技术、新产品层出不穷,其中,大模型(Large Language Models)作为AI领域的颠覆性创新,凭借其在语言生成、理解及多任务适应上的卓越表现,迅速点燃了科技界的热情。从阿尔法狗的胜利到GPT系列的横空出世,大模型不仅展现了人工智能前所未有的创造力与洞察力,也预示着智能化转型的新纪元。然而,大模型的潜力要真正转化为生产力,实现从实验室到现实世界的平稳着陆,还需跨越理论到实践的鸿沟。

这样的知识库不仅能够实现对企业内部知识的快速检索和精准匹配,还能够借助大模型的语境理解和生成能力,自动总结文档、生成报告、解答复杂问题,甚至在特定领域内进行创新性思考和策略建议。

换句话说,大模型知识库可以成为企业智慧的“超级大脑”,极大提升知识的流动性和价值转化效率,让企业的每一份知识资产都成为推动业务发展和创新的源泉。

同理,既然企业可以用大模型知识库来管理企业级的知识,那么个人同样也可以构建起个人版的“智慧大脑”。想象一下,将个人的学习笔记、工作经验、技能树、甚至是兴趣爱好等各类信息,全部整合进这样一个智能化的知识管理体系中。这不仅是一个简单的信息存储仓库,而是一个能够自我学习、自我优化,并根据个人需求动态调整的知识生态系统。

所以,这篇文章,我们就来好好聊一下最近一段时间常见的本地大模型个人知识库工具。至于为什么聊这个话题呢?有两个原因。

一是因为之前其实已经有过相关涉猎了,如之前有尝试过基于Ollama+AnythingLLM轻松打造本地大模型知识库,这篇文章放在整个互联网上同类型里面也算是比较早发表的,可惜事后尝试总觉得效果不如人意,缺乏自定义能力,因此想多研究几个开源工具,进行对比选型,找出更符合自己要求的。

二是因为最近同事也拜托我给她的新电脑搭建了一套本地大模型知识库环境,这次采用的是MaxKB来实现的,由于是纯windows环境部署,一路上也是遇到了不少坑,这里也正好想复盘一下。

这里还是先盘点一下最近比较火爆的几个工具吧,下面分为知识库侧和大模型侧两个方面来说。

知识库侧主要是指更加偏向于能够直接读取文档并处理大量信息资源,包括文档上传、自动抓取在线文档,然后进行文本的自动分割、向量化处理,以及实现本地检索增强生成(RAG)等功能的工具,近期较为热门的主要包括:AnythingLLM、MaxKB、RAGFlow、FastGPT、Dify 、 Open WebUI 这六种。

这个也就是我之前使用过但是觉得效果不太理想的那位,稍微简单的介绍一下吧。

AnythingLLM 是 Mintplex Labs Inc. 开发的一款可以与任何内容聊天的私人 ChatGPT,是高效、可定制、开源的企业级文档聊天机器人解决方案。它能够将任何文档、资源或内容片段转化为大语言模型(LLM)在聊天中可以利用的相关上下文。

为管理这些文档,AnythingLLM引入工作区(workspace)的概念,作为文档的容器,可以在一个工作区内共享文档,但是工作区之间隔离。

同时,它独特的多用户模式,配合工作区使用起来效果更佳

管理员(Admin)账号:拥有全部的管理权限。

Manager账号:可管理所有工作区和文档,但是不能管理大模型、嵌入模型和向量数据库。

普通用户账号:基于已授权的工作区与大模型对话,不能对工作区和系统配置做任何更改。

■ 开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化,智能问答交互体验好

■ 无缝嵌入:支持零编码快速嵌入到第三方业务系统

■ 多模型支持:支持对接主流的大模型,包括本地私有大模型(如Llama 2)、OpenAI、Azure OpenAI和百度千帆大模型等。

使用界面是这个样子

如果稍微懂一点Linux,但是不太懂docker的,建议部署 1Panel 后再通过里面的应用商店来下载使用

如果实在不会Linux的才建议安装Docker Desktop,但是安装的过程会麻烦很多,包括开启Hyper-v、CPU虚拟化、启用WSL、修改环境变量为非家庭版等(Docker Desktop不支持家庭版哦,一套下来顺利的话也得至少半个小时以上。

上面这三种部署方式,后续也都会详细讲解到。

RAGFlow 作为一款端到端的RAG解决方案,旨在通过深度文档理解技术,解决现有RAG技术在数据处理和生成答案方面的挑战。它不仅能够处理多种格式的文档,还能够智能地识别文档中的结构和内容,从而确保数据的高质量输入。RAGFlow 的设计哲学是“高质量输入,高质量输出”,它通过提供可解释性和可控性的生成结果,让用户能够信任并依赖于系统提供的答案。

  • 深度文档理解:“Quality in, quality out”,RAGFlow 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。真正在无限上下文(token)的场景下快速完成大海捞针测试。对于用户上传的文档,它需要自动识别文档的布局,包括标题、段落、换行等,还包含难度很大的图片和表格。对于表格来说,不仅仅要识别出文档中存在表格,还会针对表格的布局做进一步识别,包括内部每一个单元格,多行文字是否需要合并成一个单元格等。并且表格的内容还会结合表头信息处理,确保以合适的形式送到数据库,从而完成 RAG 针对这些细节数字的“大海捞针”。

  • 可控可解释的文本切片:RAGFlow 提供多种文本模板,用户可以根据需求选择合适的模板,确保结果的可控性和可解释性。因此 RAGFlow 在处理文档时,给了不少的选择:Q&A,Resume,Paper,Manual,Table,Book,Law,通用… 。当然,这些分类还在不断继续扩展中,处理过程还有待完善。后续还会抽象出更多共通的东西,使各种定制化的处理更加容易。

  • 降低幻觉:RAGFlow 是一个完整的 RAG 系统,而目前开源的 RAG,大都忽视了 RAG 本身的最大优势之一:可以让 LLM 以可控的方式回答问题,或者换种说法:有理有据、消除幻觉。我们都知道,随着模型能力的不同,LLM 多少都会有概率会出现幻觉,在这种情况下, 一款 RAG 产品应该随时随地给用户以参考,让用户随时查看 LLM 是基于哪些原文来生成答案的,这需要同时生成原文的引用链接,并允许用户的鼠标 hover 上去即可调出原文的内容,甚至包含图表。如果还不能确定,再点一下便能定位到原文。RAGFlow 的文本切片过程可视化,支持手动调整,答案提供关键引用的快照并支持追根溯源,从而降低幻觉的风险。

  • 兼容各类异构数据源:RAGFlow 支持 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。对于无序文本数据,RAGFlow 可以自动提取其中的关键信息并转化为结构化表示;而对于结构化数据,它则能灵活切入,挖掘内在的语义联系。最终将这两种不同来源的数据统一进行索引和检索,为用户提供一站式的数据处理和问答体验。

  • 自动化 RAG 工作流:RAGFlow 支持全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统;大语言模型 LLM 以及向量模型均支持配置,用户可以根据实际需求自主选择。;基于多路召回、融合重排序,能够权衡上下文语义和关键词匹配两个维度,实现高效的相关性计算;提供易用的 API,可以轻松集成到各类企业系统,无论是对个人用户还是企业开发者,都极大方便了二次开发和系统集成工作。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓


特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


举报收藏 0评论 0
0相关评论
相关最新动态
推荐最新动态
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号