分享好友 最新动态首页 最新动态分类 切换频道
Android高工面试:APP画面卡顿的根本原因是什么?卡顿优化你是怎么做的
2024-12-27 03:52
  • 对Android的视图架构有整体把握。
  • 学会从根源处分析画面卡顿的原因。
  • 掌握如何编写一个流畅的App的技巧。
  • 从源码中学习Android的细想。
  • 收获两张自制图,帮助你理解Android的视图架构。

public class AnalyzeViewFrameworkActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_analyze_view_framwork);
}
}

Android高工面试:APP画面卡顿的根本原因是什么?卡顿优化你是怎么做的

上面这段代码想必Androider们大都已经不能再熟悉的更多了。但是你知道这样写了之后发生什么了吗?这个布局到底被添加到哪了?我的天,知识点来了

可能很多同学也知道这个布局是被放到了一个叫做DecorView的父布局里,但是我还是要再说一遍。且看下图✌️

这个图可能和伙伴们在书上或者网上常见的不太一样,为什么不太一样呢?因为是我自己画的,哈哈哈…

下面就来看着图捋一捋Android最基本的视图框架。

估计很多同学都知道,每一个Activity都拥有一个Window对象的实例。这个实例实际是PhoneWindow类型的。那么PhoneWindow从名字很容易看出,它应该是Window的儿子(即子类

知识点:每一个Activity都有一个PhoneWindow对象。

那么,PhoneWindow有什么用呢?它在Activity充当什么角色呢?下面我就姑且把PhoneWindow等同于Window来称呼吧。

Window从字面看它是一个窗口,意思和PC上的窗口概念有点像。但也不是那么准确。看图说。可以看到,我们要显示的布局是被放到它的属性mDecor中的,这个mDecor就是DecorView的一个实例。下面会专门撸DecorView,现在先把关注点放到Window上。Window还有一个比较重要的属性mWindowManager,它是WindowManager(这是个接口)的一个实现类的一个实例。我们平时通过getWindowManager()方法获得的东西就是这个mWindowManager。顾名思义,它是Window的管理者,负责管理着窗口及其中显示的内容。它的实际实现类是WindowManagerImpl。可能童鞋们现在正在PhoneWindow中寻找着这个mWindowManager是在哪里实例化的,是不是上下来回滚动着这个类都找不见?STOP!mWindowManager是在它爹那里就实例化好的。下面代码是在中的。

public void setWindowManager(WindowManager wm,
IBinder appToken,
String appName,
boolean hardwareAccelerated) {

if (wm == null) {
wm = (WindowManager)mContext.getSystemService(Context.WINDOW_SERVICE);
//获取了一个WindowManager
}
mWindowManager = ((WindowManagerImpl)wm).createLocalWindowManager(this);
//通过这里我们可以知道,上面获取到的wm实际是WindowManagerImpl类型的。
}

通过上面的介绍,我们已经知道了Window中有负责承载布局的DecorView,有负责管理的WindowManager(事实上它只是个代理,后面会讲它代理的是谁)。

前面提到过,在Activity的onCreate()中通过setContentView()设置的布局实际是被放到DecorView中的。我们在图中找到DecorView。

从图中可以看到,DecorView继承了FrameLayout,并且一般情况下,它会在先添加一个预设的布局。比如DecorCaptionView,它是从上到下放置自己的子布局的,相当于一个LinearLayout。通常它会有一个标题栏,然后有一个容纳内容的mContentRoot,这个布局的类型视情况而定。我们希望显示的布局就是放到了mContentRoot中。

知识点:通过setContentView()设置的布局是被放到DecorView中,DecorView是视图树的最顶层。

前面已经提到过,WindowManager在Window中具有很重要的作用。我们先在图中找到它。这里需要先说明一点,在PhoneWindow中的mWindowManager实际是WindowManagerImpl类型的。WindowManagerImpl自然就是接口WindowManager的一个实现类喽。这一点是我没有在图中反映的。

WindowManager是在Activity执行attach()时被创建的,attach()方法是在onCreate()之前被调用的。关于Activity的创建可以看看我的这篇【可能是史上最简单的!一张图3分钟让你明白Activity启动流程,不看后悔!http://www.jianshu.com/p/9ecea420eb52】
Activity.java

final void attach(Context context, ActivityThread aThread,
Instrumentation instr, IBinder token, int ident,
Application application, Intent intent, ActivityInfo info,
CharSequence title, Activity parent, String id,
NonConfigurationInstances lastNonConfigurationInstances,
Configuration config, String referrer, IVoiceInteractor voiceInteractor,
Window window){

mWindow = new PhoneWindow(this, window);
//创建Window

mWindow.setWindowManager(
(WindowManager)context.getSystemService(Context.WINDOW_SERVICE),
mToken, mComponent.flattenToString(),
(info.flags & ActivityInfo.FLAG_HARDWARE_ACCELERATED) != 0);
//注意!这里就是在创建WindowManager。
//这个方法在前面已经说过了。
if (mParent != null) {
mWindow.setContainer(mParent.getWindow());
}
mWindowManager = mWindow.getWindowManager();
}

继续看图。WindowManagerImpl持有了PhoneWindow的引用,因此它可以对PhoneWindow进行管理。同时它还持有一个非常重要的引用mGlobal。这个mGlobal指向一个WindowManagerGlobal类型的单例对象,这个单例每个应用程序只有唯一的一个。在图中,我说明了WindowManagerGlobal维护了本应用程序内所有Window的DecorView,以及与每一个DecorView对应关联的ViewRootImpl。这也就是为什么我前面提到过,WindowManager只是一个代理,实际的管理功能是通过WindowManagerGlobal实现的。我们来看个源码的例子就比较清晰了。开始啦

WimdowManagerImpl.java

public void addView(@NonNull View view, @NonNull ViewGroup.LayoutParams params) {

mGlobal.addView(view, params, mContext.getDisplay(), mParentWindow);
//实际是通过WindowManagerGlobal实现的。
}

从上面的代码可以看出,WindowManagerImpl确实只是WindowManagerGlobal的一个代理而已。同时,上面这个方法在整个Android的视图框架流程中十分的重要。我们知道,在Activity执行onResume()后界面就要开始渲染了。原因是在onResume()时,会调用WindowManager的addView()方法(实际最后调用的是WindowManagerGlobal的addView()方法),把视图添加到窗口上。结合我的这篇【可能是史上最简单的!一张图3分钟让你明白Activity启动流程,不看后悔!http://www.jianshu.com/p/9ecea420eb52】,可以帮助你更好的理解Android的视图框架。
ActivityThread.java

final void handleResumeActivity(IBinder token,
boolean clearHide, boolean isForward, boolean reallyResume, int seq, String reason) {

ViewManager wm = a.getWindowManager();
//获得WindowManager,实际是WindowManagerImpl

wm.addView(decor, l);
//添加视图

wm.updateViewLayout(decor, l);
//需要刷新的时候会走这里

}

从上面可以看到,当Activity执行onResume()的时候就会添加视图,或者刷新视图。需要解释一点WindowManager实现了ViewManager接口。

如图中所说,WindowManagerGlobal调用addView()的时候会把DecorView添加到它维护的数组中去,并且会创建另一个关键且极其重要的ViewRootImpl(这个必须要专门讲一下)类型的对象,并且也会把它存到一个数组中维护。
WindowManagerGlobal.java

public void addView(View view, ViewGroup.LayoutParams params,
Display display, Window parentWindow) {

root = new ViewRootImpl(view.getContext(), display);
//重要角色登场
view.setLayoutParams(wparams);
mViews.add(view);
mRoots.add(root);
//保存起来维护
mParams.add(wparams);

root.setView(view, wparams, panelParentView);
//设置必要属性view是DecorView,panelParentView是PhoneWindow

}

可以看出ViewRootImpl是在Activity执行onResume()的时候才被创建的,并且此时才把DecorView传进去让它管理。

知识点:WindowManager是在onCreate()时被创建。它对窗口的管理能力实际是通过WindowManagerGlobal实现的。在onResume()是视图才通过WindowManager被添加到窗口上。

ViewRootImpl能够和系统的WindowManagerService进行交互,并且管理着DecorView的绘制和窗口状态。非常的重要。赶紧在图中找到对应位置吧

ViewRootImpl并不是一个View,而是负责管理视图的。它配合系统来完成对一个Window内的视图树的管理。从图中也可以看到,它持有了DecorView的引用,并且视图树它是视图树绘制的起点。因此,ViewRootImpl会稍微复杂一点,需要我们更深入的去了解,在图中我标出了它比较重要的组成Surface和Choreographer等都会在后面提到。

到此,我们已经一起把第一张图撸了一遍了,现在童鞋们因该对Android视图框架有了大致的了解。下面将更进一步的去了解Android的绘制机制。

下面将会详细的讲解为什么我们设置的视图能够被绘制到屏幕上?这中间究竟隐藏着怎样的离奇?看完之后,你自然就能够从根源知道为什么你的App会那么卡,以及开始有思路着手解决这些卡顿。

同样用一张图来展示这个过程。由于Android绘制机制确实有点复杂,所以第一眼看到的时候你的内心中可能蹦腾了一万只草泥马😂。不要怕!我们从源头开始,一点一点的梳理这个看似复杂的绘制机制。为什么说看似复杂呢?因为这个过程只需要几分钟。Just Do It

整天听到CPU、GPU的,你知道他们是干什么的吗?这里简单的提一下,帮助理解后面的内容。

在Android的绘制架构中,CPU主要负责了视图的测量、布局、记录、把内容计算成Polygons多边形或者Texture纹理,而GPU主要负责把Polygons或者Textture进行Rasterization栅格化,这样才能在屏幕上成像。在使用硬件加速后,GPU会分担CPU的计算任务,而CPU会专注处理逻辑,这样减轻CPU的负担,使得整个系统效率更高。

RefreshRate刷新率是屏幕每秒刷新的次数,是一个与硬件有关的固定值。在Android平台上,这个值一般为60HZ,即屏幕每秒刷新60次。

FrameRate帧率是每秒绘制的帧数。通常只要帧数和刷新率保持一致,就能够看到流畅的画面。在Android平台,我们应该尽量维持60FPS的帧率。但有时候由于视图的复杂,它们可能就会出现不一致的情况。

如图,当帧率小于刷新率时,比如图中的30FPS < 60HZ,就会出现相邻两帧看到的是同一个画面,这就造成了卡顿。这就是为什么我们总会说,要尽量保证一帧画面能够在16ms内绘制完成,就是为了和屏幕的刷新率保持同步。

下面将会介绍Android是如何来确保刷新率和帧率保持同步的。

你可能在游戏的设置中见过Vsync,开启它通常能够提高游戏性能。在Android中,同样使用Vsync垂直同步来提高显示性能。它能够使帧率FrameRate和硬件的RefreshRate刷新强制保持一致。

HWComposer与Vsync不得不说的事

看图啦看图啦。首先在最左边我们看到有个叫HWComposer的类,这是一个c++编写的类。它Android系统初始化时就被创建,然后开始配合硬件产生Vsync信号,也就是图中的HW_Vsync信号。当然它不是一直不停的在产生,这样会导致Vsync信号的接收者不停的接收到绘制、渲染命令,即使它们并不需要,这样会带来严重的性能损耗,因为进行了很多无用的绘制。所以它被设计设计成能够唤醒和睡眠的。这使得HWComposer在需要时才产生Vsync信号(比如当屏幕上的内容需要改变时),不需要时进入睡眠状态(比如当屏幕上的内容保持不变时,此时屏幕每次刷新都是显示缓冲区里没发生变化的内容)。

如图,Vsync的两个接收者,一个是SurfaceFlinger(负责合成各个Surface),一个是Choreographer(负责控制视图的绘制)。我们稍后再介绍,现在先知道它们是干什么的就行了。

Vsync offset机制

为了提高效率,尽量减少卡顿,在Android 4.1时引入了Vsync机制,并在随后的4.4版本中加入Vsync offset偏移机制。

图1. 为4.1时期的Vsync机制。可以看到,当一个Vsync信号到来时,SurfaceFlinger和UI绘制进程会同时启动,导致它们竞争CPU资源,而CPU分配资源会耗费时间,着降低系统性能。同时当收到一个Vsync信号时,第N帧开始绘制。等再收到一个Vsync信号时,第N帧才被SurfaceFlinger合成。而需要显示到屏幕上,需要等都第三个Vsync信号。这是比较低效率。于是才有了图2. 4.4版本加入的Vsync offset机制。

图2. Google加入Vsync offset机制后,原本的HW_Vsync信号会经过DispSync会分成Vsync和SF_Vsync两个虚拟化的Vsync信号。其中Vsync信号会发送到Choreographer中,而SF_Vsync会发送到SurfaceFlinger中。理论上只要phase_app和phase_sf这两个偏移参数设置合理,在绘制阶段消耗的时间控制好,那么画面就会像图2中的前几帧那样有序流畅的进行。理想总是美好的。实际上很难一直维持这种有序和流畅,比如frame_3是比较复杂的一帧,它的绘制完成的时间超过了SurfaceFlinger开始合成的时间,所以它必须要等到下一个Vsync信号到来时才能被合成。这样便造成了一帧的丢失。但即使是这样,如你所见,加入了Vsync offset机制后,绘制效率还是提高了很多。

从图中可以看到,Vsync和SF_Vsync的偏移量分别由phase_app和phase_sf控制,这两个值是可以调节的,默认为0,可为负值。你只需要找到BoardConfig.mk文件,就可以对这两个值进行调节。

前面介绍了几个关键的概念,现在我们回到ViewRootImpl中去,在图中找到ViewRootImpl的对应位置。

前面说过,ViewRootImpl控制着一个Window中的整个视图树的绘制。那它是如何进行控制的呢?一次绘制究竟是如何开始的呢

在ViewRootImpl创建的时候,会获取到前面提到过过的一个关键对象Choreographer。Choreographer在一个线程中仅存在一个实例,因此在UI线程只有一个Choreographer存在。也就说,通常情况下,它相当于一个应用中的单例。

在ViewRootImpl初始化时,会实现一个Choreographer.FrameCallback(这是一个Choreographer中的内部类,并向Choreographer中post。顾名思义,FrameCallback会在每次接收到Vsync信号时被回调。
Choreographer.java

public interface FrameCallback {
public void doFrame(long frameTimeNanos);
//一旦注册到CallbackQueue中,那么
//每次Choreographer接收到Vsync信号时都会回调。
}

FrameCallback一旦被注册,那么每次收到Vsync信号时它都会被回调。利用它,我们可以实现会帧率的监听。

ViewRootImpl.java

//这个方法只有在ViewRootImpl初始化时才会被调用
private void profileRendering(boolean enabled) {

mRenderProfiler = new Choreographer.FrameCallback() {
@Override
public void doFrame(long frameTimeNanos) {

scheduleTraversals();
//请求一个Vsync信号,后面还会提到这个方法
mChoreographer.postFrameCallback(mRenderProfiler);
//每次回调时,重新将FrameCallback post到Choreographer中

}
};

mChoreographer.postFrameCallback(mRenderProfiler);
//将FrameCallback post到Choreographer中

}

上面代码出现了一个重要方法scheduleTraversals()。下面我们看看它究竟为何重要。
ViewRootImpl.java

void scheduleTraversals() {

mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
//向Choreographer中post一个TraversalRunnable
//这又是一个十分重要的对象

}

可以看出scheduleTraversals()每次调用时会向Choreographer中post一个TraversalRunnable,它会促使Choreographer去请求一个Vsync信号。所以这个方法的作用就是用来请求一次Vsync信号刷新界面的。事实上,你可以看到,在**invalidate()、requestLayout()**等操作中,都能够看到它被调用。原因就是这些操作需要刷新界面,所以需要请求一个Vsync信号来出发新界面的绘制。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

写在最后

对程序员来说,很多技术的学习都是“防御性”的。也就是说,我们是在为未来学习。我们学习新技术的目的,或是为了在新项目中应用,或仅仅是为了将来的面试。但不管怎样,一定不能“止步不前”,不能荒废掉。

文章以下内容会给出阿里与美团的面试题(答案+解析)、面试题库、Java核心知识点梳理等

[外链图片转存中…(img-Q6Pf2keF-1712697384025)]
[外链图片转存中…(img-9DymvEtd-1712697384025)]

文章以下内容会给出阿里与美团的面试题(答案+解析)、面试题库、Java核心知识点梳理等

最新文章
目前有那些信息流广告(5个搜索引擎信息流广告效果和投放体验)
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室依法管网、依法办网、依法上网的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和
百度网站收录提交,百度网站收录提交器
快速提升网站可见度与搜索引擎排名的必备技巧一、理解网站收录的重要性百度作为中国最大的搜索引擎,拥有庞大的用户群体和高度的市场占有率。为了确保您的网站能够被更多潜在用户发现并访问,网站是至关重要的一步。正确的提交方式不仅能加
一步到位,利用AI生成超逼真美女写真,轻松上手!
在这个科技飞速发展的年代,AI的应用已经渗透到我们生活的方方面面。其中,AI绘画、AI写真制作更是得到了广泛的关注。不少小伙伴们都曾幻想过,拥有一张属于自己的专属美女写真,甚至可以用它来当做社交平台的头像,或者送给好友作为惊喜。
Python爬虫入门实战(详细步骤)
爬虫这个功能,我个人理解是什么语言都能写的,只要能正常发送 HTTP 请求,将响应回来的静态页面模版 HTML 上把我们所需要的数据提取出来就可以了,原理很简单,这个东西当然可以手动去统计收集,但是
阿里云助力易点天下实现程序化广告+AI多维度效率提升
  12月12日,在第十二届中国企业全球形象高峰论坛现场,联合阿里云正式发布了在程序化广告领域的多项重要突破,这些成果主要基于阿里云平台PAI、通义大模型以及阿里云+云原生技术生成。  市场研究机构MAGNA最新发布的《全球广告预测》
观山湖区第一高级中学环境好不好
摘要:观山湖区第一高级中学的环境综合评价涵盖了校园设施、教学资源、师资力量等多个方面。小编从升学规划师的角度出发,深入分析学校环境对学长和教育质量的重要性,探讨该校在各方面的表现及其对学生未来发展的潜在影响。观山湖区第一高
遇到纠纷不用慌,“人民调解”帮你忙!“解纷芜优”指引来了
生活中可能遇到矛盾纠纷,如果闹上法庭,不仅要花时间和金钱,还会伤害人与人之间的和气……那么,如何更加妥善高效处理矛盾纠纷呢?快随小编来看看“人民调解”如何省时省心帮助纠纷双方解决问题吧现在可以通过“解纷芜优”在线申请调解啦
甲骨文谈存储:其实一开始我们就是认真的
当人们谈到iPhone的成功最大的因素之一就是软件与硬件最强大的结合。雷军也表示软硬件结合互联网是小米成功的核心。今天甲骨文高调宣布其存储设备并向业 内发出最强音---甲骨文的软件加上甲骨文的存储设备,就是要为企业级数据市场提供最好
青年小店,让城市未来这YOUNG出彩丨青年小店榜样计划(浙江杭州站)圆满举行
杭州,一座创新活力之城、青年友好之城,吸引着大批年轻人前来生活与创业,为大批怀揣梦想与激情的年轻人提供了创业沃土,也承载着不少年轻人的诗和远方。近年来,杭州市积极践行青年优先发展理念,全力支持青年创新创业,吸引众多有志青年
淘宝直播店抽免单如何配置?
抽免单工具是淘宝直播平台提供给商家和主播的一种玩法工具,用户通过对指定商品下单参与活动,可以赢取免单福利,主播可以通过该工具进行直播间福利发放,亦可通过该工具提升成交爆发系数,欢迎各位商家和主播伙伴使用~注意:抽免单工具202
相关文章
推荐文章
发表评论
0评