分享好友 最新动态首页 最新动态分类 切换频道
Elasticsearch基础介绍及索引原理分析
2024-12-27 00:23

Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elasticsearch 并不仅仅是 Lucene 那么简单,它不仅包括了全文搜索功能,还可以进行以下工作:

  • 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。
  • 实时分析的分布式搜索引擎。
  • 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。

先说Elasticsearch的文件存储,Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式,比如下面这条用户数据:

 用Mysql这样的数据库存储就会容易想到建立一张User表,有balabala的字段等,在Elasticsearch里这就是一个文档,当然这个文档会属于一个User的类型,各种各样的类型存在于一个索引当中。

这里有一份简易的将Elasticsearch和关系型数据术语对照表:

 一个 Elasticsearch 集群可以包含多个索引(数据库),也就是说其中包含了很多类型(表)。这些类型中包含了很多的文档(行),然后每个文档中又包含了很多的字段(列)。Elasticsearch的交互,可以使用Java API,也可以直接使用HTTP的Restful API方式,比如我们打算插入一条记录,可以简单发送一个HTTP的请求:

更新,查询也是类似这样的操作。

Elasticsearch最关键的就是提供强大的索引能力。

Elasticsearch索引的精髓:

一切设计都是为了提高搜索的性能

另一层意思:为了提高搜索的性能,难免会牺牲某些其他方面,比如插入/更新,否则其他数据库不用混了。前面看到往Elasticsearch里插入一条记录,其实就是直接PUT一个json的对象,这个对象有多个fields,比如上面例子中的name, sex, age, about, interests,那么在插入这些数据到Elasticsearch的同时,Elasticsearch还默默1的为这些字段建立索引--倒排索引,因为Elasticsearch最核心功能是搜索。

 

Elasticsearch使用的倒排索引比关系型数据库的B-Tree索引快,为什么呢?

什么是B-Tree索引?

上大学读书时老师教过我们,二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构:

为了提高查询的效率,减少磁盘寻道次数,将多个值作为一个数组通过连续区间存放,一次寻道读取多个数据,同时也降低树的高度。

什么是倒排索引?

继续上面的例子,假设有这么几条数据(为了简单,去掉about, interests这两个field):

ID是Elasticsearch自建的文档id,那么Elasticsearch建立的索引如下:

Name:

Age:

Sex:

Posting List

Elasticsearch分别为每个field都建立了一个倒排索引,Kate, John, 24, Female这些叫term,而[1,2]就是Posting List。Posting list就是一个int的数组,存储了所有符合某个term的文档id。

看到这里,不要认为就结束了,精彩的部分才刚开始...

通过posting list这种索引方式似乎可以很快进行查找,比如要找age=24的同学,爱回答问题的小明马上就举手回答:我知道,id是1,2的同学。但是,如果这里有上千万的记录呢?如果是想通过name来查找呢?

Term Dictionary

Elasticsearch为了能快速找到某个term,将所有的term排个序,二分法查找term,logN的查找效率,就像通过字典查找一样,这就是Term Dictionary。现在再看起来,似乎和传统数据库通过B-Tree的方式类似啊,为什么说比B-Tree的查询快呢?

Term Index

B-Tree通过减少磁盘寻道次数来提高查询性能,Elasticsearch也是采用同样的思路,直接通过内存查找term,不读磁盘,但是如果term太多,term dictionary也会很大,放内存不现实,于是有了Term Index,就像字典里的索引页一样,A开头的有哪些term,分别在哪页,可以理解term index是一颗树:

所以term index不需要存下所有的term,而仅仅是他们的一些前缀与Term Dictionary的block之间的映射关系,再结合FST(Finite State Transducers)的压缩技术,可以使term index缓存到内存中。从term index查到对应的term dictionary的block位置之后,再去磁盘上找term,大大减少了磁盘随机读的次数。

这时候爱提问的小明又举手了:"那个FST是神马东东啊?"

一看就知道小明是一个上大学读书的时候跟我一样不认真听课的孩子,数据结构老师一定讲过什么是FST。但没办法,我也忘了,这里再补下课:

FSTs are finite-state machines that map a term (byte sequence) to an arbitrary output.

假设我们现在要将mop, moth, pop, star, stop and top(term index里的term前缀)映射到序号:0,1,2,3,4,5(term dictionary的block位置)。最简单的做法就是定义个Map<string, integer="">,大家找到自己的位置对应入座就好了,但从内存占用少的角度想想,有没有更优的办法呢?答案就是:FST。

FSTs are finite-state machines that map a term (byte sequence) to an arbitrary output.

FST以字节的方式存储所有的term,这种压缩方式可以有效的缩减存储空间,使得term index足以放进内存,但这种方式也会导致查找时需要更多的CPU资源。

后面的更精彩,看累了的同学可以喝杯咖啡……

压缩技巧

Elasticsearch里除了上面说到用FST压缩term index外,对posting list也有压缩技巧。 
小明喝完咖啡又举手了:"posting list不是已经只存储文档id了吗?还需要压缩?"

嗯,我们再看回最开始的例子,如果Elasticsearch需要对同学的性别进行索引(这时传统关系型数据库已经哭晕在厕所……),会怎样?如果有上千万个同学,而世界上只有男/女这样两个性别,每个posting list都会有至少百万个文档id。 Elasticsearch是如何有效的对这些文档id压缩的呢?

Frame Of Reference

增量编码压缩,将大数变小数,按字节存储

首先,Elasticsearch要求posting list是有序的(为了提高搜索的性能,再任性的要求也得满足),这样做的一个好处是方便压缩,看下面这个图例: 

如果数学不是体育老师教的话,还是比较容易看出来这种压缩技巧的。

原理就是通过增量,将原来的大数变成小数仅存储增量值,再精打细算按bit排好队,最后通过字节存储,而不是大大咧咧的尽管是2也是用int(4个字节)来存储。

Roaring bitmaps

说到Roaring bitmaps,就必须先从bitmap说起。Bitmap是一种数据结构,假设有某个posting list:

[1,3,4,7,10]

对应的bitmap就是:

[1,0,1,1,0,0,1,0,0,1]

非常直观,用0/1表示某个值是否存在,比如10这个值就对应第10位,对应的bit值是1,这样用一个字节就可以代表8个文档id,旧版本(5.0之前)的Lucene就是用这样的方式来压缩的,但这样的压缩方式仍然不够高效,如果有1亿个文档,那么需要12.5MB的存储空间,这仅仅是对应一个索引字段(我们往往会有很多个索引字段)。于是有人想出了Roaring bitmaps这样更高效的数据结构。

Bitmap的缺点是存储空间随着文档个数线性增长,Roaring bitmaps需要打破这个魔咒就一定要用到某些指数特性:

将posting list按照65535为界限分块,比如第一块所包含的文档id范围在0~65535之间,第二块的id范围是65536~131071,以此类推。再用<商,余数>的组合表示每一组id,这样每组里的id范围都在0~65535内了,剩下的就好办了,既然每组id不会变得无限大,那么我们就可以通过最有效的方式对这里的id存储。

联合索引

上面说了半天都是单field索引,如果多个field索引的联合查询,倒排索引如何满足快速查询的要求呢?

  • 利用跳表(Skip list)的数据结构快速做“与”运算,或者
  • 利用上面提到的bitset按位“与”

先看看跳表的数据结构:

将一个有序链表level0,挑出其中几个元素到level1及level2,每个level越往上,选出来的指针元素越少,查找时依次从高level往低查找,比如55,先找到level2的31,再找到level1的47,最后找到55,一共3次查找,查找效率和2叉树的效率相当,但也是用了一定的空间冗余来换取的。

假设有下面三个posting list需要联合索引:

如果使用跳表,对最短的posting list中的每个id,逐个在另外两个posting list中查找看是否存在,最后得到交集的结果。

如果使用bitset,就很直观了,直接按位与,得到的结果就是最后的交集。

 

Elasticsearch的索引思路:

将磁盘里的东西尽量搬进内存,减少磁盘随机读取次数(同时也利用磁盘顺序读特性),结合各种奇技淫巧的压缩算法,用及其苛刻的态度使用内存。 

所以,对于使用Elasticsearch进行索引时需要注意:

  • 不需要索引的字段,一定要明确定义出来,因为默认是自动建索引的
  • 同样的道理,对于String类型的字段,不需要analysis的也需要明确定义出来,因为默认也是会analysis的
  • 选择有规律的ID很重要,随机性太大的ID(比如java的UUID)不利于查询

关于最后一点,个人认为有多个因素:

其中一个(也许不是最重要的)因素: 上面看到的压缩算法,都是对Posting list里的大量ID进行压缩的,那如果ID是顺序的,或者是有公共前缀等具有一定规律性的ID,压缩比会比较高;

最新文章
这几个彩票优质公众号,让你中奖不再难!
在这个激动人心的时刻,彩票迷们是否渴望能第一时间获取到开奖结果呢?今天,小编为大家推荐几个彩票优质公众号,希望能帮助大家在未来的购彩中好运连连,期期爆中!关注这些公众号,您将能在第一时间获取到你关心的各类彩票开奖信息。无论
这电脑打英雄联盟开录制视频一卡一卡的有点掉帧关掉录制就不卡是怎么回事?以前录制都不卡的?
你的cpu是不是9750啊,我9750 2060笔记本,外接2k 不开录制就很流畅,开了录制就会卡,也不是卡的严重,但就是能看到卡帧,我在全网找办法。1、打开TGP后,进入英雄联盟游戏界面,在选择大区的页面,右上角勾选开启QT语音,然后在游戏主页
退本!kimi智能App是做任务诈骗软件!被骗提现不了怎么办
kimi智能App是做任务诈骗软件!被骗提现不了怎么办技术出嘿《溦:9836356》(一)希望阅读此文的读者能够及时采取措施以减少损失;请及时与团队联系提供解决方案(文章下面图片有咨询方式)若想追回损失资产,务必仔细阅读以下内容。【JFHHERYE
高德地图怎么在地图上设置自己店的位置-门店地图定位服务
高德地图是一款功能丰富的地图应用,它提供了详细的地图信息、实时的交通状况和的服务。这款地图应用适合各种使用场景,无论是城市出行、郊区探索还是驾车、骑行和步行,都能为用户提供可靠的导航指引。高德地图拥有庞大的地图数据,覆盖了
这家跨境独立站年入42.9亿元 引流用的什么招儿?
原创:派派粉来源:跨境派做跨境电商无非两个路子:一是在亚马逊、ebay、wish 等电商平台开店卖货;另一条则是搭建自己的网站,将商品放在自己的网站上销售。刚入行的跨境小白们起初会选择在大平台上开店卖货。大平台做的久了,会发现平台
超好用的视频界AI助手——NoteGPT
6.笔记与记忆卡生成 我可以根据自己的需要,创建个性化的笔记和学习卡片,这不仅加深了我对知识的理解和记忆,也为我的复习提供了极大的方便。 二、AI助手还有哪些功能 NoteGPT作为一个视频界的AI助手,还有以下功
用AI一键生成超逼真美女写真,快来体验超火的AI神器!
在首页找到“生成照片”选项,进入后你会看到多种美女写真模板可供选择。你可以根据个人的喜好,选择想要的模板,模特风格多样化,能满足不同用户的需求。步骤三:输入描述 选择好模板后,系统会提示输入相应的文本描述。描述可以尽量详细
绵羊漫画app免费版下载
绝对好看的漫画都在这里。《绵羊漫画 免费版》是一款非常不错的漫画阅读软件。在绵羊漫画软件内,拥有着海量的漫画资源,各种类型的漫画,超全的漫画种类,只要是你想看的漫画,都能轻松的在这里搜索的到,而且所有的漫画,免费任你尽情的
给排水CAD入门学习之排水斜弯的绘制技巧
有些刚开始进行的小伙伴在使用正版CAD软件绘制图纸的过程中,有些时候会需要绘制排水斜弯,那么浩辰软件中怎么绘制排水斜弯呢?接下来的给排水CAD入门学习教程就让小编来给大家介绍一下正版CAD软件——浩辰CAD给排水软件中绘制排水斜弯的相
高清美女写真生成神器:AI画出你心中的完美女神!
限时免费,点击体验最近超火的AI生图神器,坐拥3000美女的大男主就是你! https://ai.sohu.com/pc/generate/textToImg?_trans_=030001_yljdaimn 在这个科技飞速发展的时代,AI技术已经渗透到我们生活的各个角落。想像一下,宝子们,今天你
相关文章
推荐文章
发表评论
0评