建模语言是一种描述信息或模型的编程语言,在运筹优化领域,一般是指代数建模语言。
比如要写一个线性规划问题的建模和求解,可以采用C、Python、Java等通用编程语言来实现计算机编程(码代码),也可以换采用建模语言。
本文将以阿里达摩院研发的MindOpt建模语言(MindOpt Algebra Programming Language, MindOptAPL,简称为MAPL)来讲解。MAPL是一种高效且通用的代数建模语言,当前主要用于数学规划问题的建模,并支持调用多种求解器求解。
- 左边是数学模型,三要素:两个变量xa和xb,目标函数是最大化一个公式,约束是最下面两行,限定取值关系。
- 中间是用MAPL建模语言编的代码。可以看到前面4行就表达清楚了左边的数学公式。最后“option solver mindopt;”是设置计算这个问题的求解器为mindopt求解器,“solve;”是执行求解。
- 右边就是求解器的计算结果,xa = 3,xb=5,此时目标函数最大,是1050。
语法更简单(代码对比)
从上面我们可以看到建模语言可以方便地进行数学建模和求解的代码。这里我们对比一下建模语言和通用的编程语言,来看看用建模语言优势。
以下面这个问题为示例:
| 线性规划模型:
max x0 + 2 * x1 + 3 * x2 + x3
s.t. (-1) * x0 + x1 + 3 * x2 + 10 * x3 <= 20
x0 - 3 * x1 + x2 = 30
x1 - 3.5 * x3 = 0
0 ≤ x0 ≤ 40
0 ≤ x1
0 ≤ x2
2 ≤ x3 ≤ 3
我们使用 MindOpt APL 建模语言 和 MindOpt 求解器的 Python APIs,分别对上面的线性规划模型建模,并求解模型。
MAPL代码:
Python代码:
从上面的例子可以看到,MAPL建模语言比较简洁,没有Python运行这么多复杂的创建、添加、异常捕捉和释放的过程,就聚焦在编个模型去求解计算,更易于理解和添加。上面的例子还只是线性规划,对于非线性规划的问题,Python的API会更复杂。而采用MAPL建模语言只需要表达清楚数学公式,对于调试模型修改更方便。
支持多种求解器,换求解器的时候不用重复编程
很多人选择建模语言,最大的原因是希望切换求解器方案。因为不同品牌的求解器的求解能力不一样,遇到一个问题数学模型调整了一行公式,可能之前选择的求解器就不支持了,需要更换求解器。
此时如果选择用各家求解器的API来编程,换一个求解器,就需要重新学习对应的API,重新码代码,维护起来困难。虽然业界也有通用的 .mps 和 .nl 的优化问题数据格式,但是熟悉不同求解器的调用数据计算的方法也很耗时,或者装对应的软件也很麻烦。这个时候,建模语言的优势就很大。
比如下面是MAPL代码中,只需要换一行,就能换求解器进行计算:
更多MAPL支持的求解器,可以参考上一个博客MindOpt APL,可以支持调用几十种求解器的建模语言
建模语言也支持通用编程语言的API,如Python
有很多同学喜欢Python语言,更希望用Python编程。MAPL建模语言支持Python来调用,import maplpy后就用Python的方式来编代码,能继续享受一行代码换求解器的优良属性。可一看广告流量分配:曝光和转化均衡案例中的代码对比。
MAPL国内第一款拥有自主知识产权,完全自研的国产建模语言,提供了丰富文档学习以及案例参考。并且在电力SCUC等领域问题上建模性能优秀,对标或超越已有产品。对比AMPL等建模语言,部分语法上更灵活简单,后续也会支持向量化建模等特色能力,提升建模易用性等。