Google推出了实验性的NotebookLM产品,一款基于RAG的个性化AI助手产品,基于用户提供的可信信息,通过RAG,帮助用户洞察和学习参考内容,然后借助AI整理笔记,转换为用户最终需要的大纲、博客、商业计划书等最终目的。
在之前的博客中,当时提到:"AI搜索产品的边界绝不止步于搜索,往上往下,往上如何更懂用户真实诉求,往下通过Agents组合解决复杂的问题,给用户提供端到端的个性化解决方案"。的这款 也比较契合这样的思路,基于用户提供的信息,结合搜索技术,提供个性化的笔记AI助手,但整体比较克制,重点强调可信,也就是遵循用户提供的信息,并未结合google的强项通用搜索。
下面步入正题,我们来介绍NotebookLM的功能,并做一个尝试。
官方介绍是,NotebookLM 是一个基于用户信任信息(也就是用户自己提供的文档)的个性化(私人的)人工智能助手。
目前,NotebookLM 仅在US提供服务,体验需要魔法
功能特点
如果机器回复的内容获得用户的认可,用户可以将回复内容,所以设想下协作模式,就是用户先上传要学习的参考文档,然后就自己关注的点(其实就是整理大纲)进行提问,最后将这些回复内容都保存到笔记。
当你所有关心的问题都提问后,你就获得了许多有用有价值的notes片段。基于这些片段,就可以:
隐私说明
google强调用户的个人数据不会被用于训练 NotebookLM,因此任何私人或敏感信息都将保持私密,除非用户选择与合作者共享资源。
行业评价
看完了官方介绍,我们来实战上手。
新建笔记本
首先新建一个笔记本,修改名称为"人工智能与搜索引擎"
上传参考文档
这里我们上传王树森的《搜索引擎技术》pdf作为参考文档。
可以直接上传PDF,文本文件,也可以从google云盘选择,或者直接复制文本。
洞察理解文档
现在开始提问,我们要了解搜索引擎与人工智能,我们开始提问:
Q: 搜索引擎的原理是什么
可以看到,NotebookLM比较好的回复了搜索引擎链路,包含三级漏斗等信息。
点击引用可以查看原文。
现在我们了解了基本的链路,那么我们接着看每一块有什么样的技术。
Q: 搜索引擎中Query Processing具体处理方法
回复不稳定,用英文就行了回复,不过内容还是靠谱的。
接着,我们来问召回的技术方案。
Q: 搜索引擎的召回 (Retrieval)部分,通常用有哪些召回方案,用到哪些人工智能技术,请用中文回答
这里试下,加上用中文回答的指令。
回答比较好,提出了三种召回方案,以及用到的技术,我们保存起来,继续提问。
Q: 详细介绍下搜索引擎排序的三级漏斗,采用的模型方案,用中文回复
三级漏斗介绍了,但是模型方案回答一般般,先保存起来,
快速起草内容
提问演示告一段落,我们开始将上述提问后保存的notes整理。注意这里的notes可以自己添加,随时记录自己的想法。
通过上面的提问,我们保存了4个notes,我们选中:
可以看到,系统给出了 、、等功能,我们试下:
系统生成了一个学习指南,可以看到包含QP、召回、排序等。
我们试下其他的,还是选中这四个:
Q: 基于这些内容创建一篇博客,用markdown输出,用中文回复
下面看成品
优点:
可优化的方向: