如何自学黑客&网络安全
黑客零基础入门学习路线&规划
初级黑客
1、网络安全理论知识(2天)
①了解行业相关背景,前景,确定发展方向。
②学习网络安全相关法律法规。
③网络安全运营的概念。
④等保简介、等保规定、流程和规范。(非常重要)
2、渗透测试基础(一周)
①渗透测试的流程、分类、标准
②信息收集技术:主动/被动信息搜集、Nmap工具、Google Hacking
③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF)、绕过IDS和反病毒侦察
④主机攻防演练:MS17-010、MS08-067、MS10-046、MS12-20等
3、操作系统基础(一周)
①Windows系统常见功能和命令
②Kali Linux系统常见功能和命令
③操作系统安全(系统入侵排查/系统加固基础)
4、计算机网络基础(一周)
①计算机网络基础、协议和架构
②网络通信原理、OSI模型、数据转发流程
③常见协议解析(HTTP、TCP/IP、ARP等)
④网络攻击技术与网络安全防御技术
⑤Web漏洞原理与防御:主动/被动攻击、DDOS攻击、CVE漏洞复现
5、数据库基础操作(2天)
①数据库基础
②SQL语言基础
③数据库安全加固
6、Web渗透(1周)
①HTML、CSS和JavaScript简介
②OWASP Top10
③Web漏洞扫描工具
④Web渗透工具:Nmap、BurpSuite、SQLMap、其他(菜刀、漏扫等)
恭喜你,如果学到这里,你基本可以从事一份网络安全相关的工作,比如渗透测试、Web 渗透、安全服务、安全分析等岗位;如果等保模块学的好,还可以从事等保工程师。薪资区间6k-15k
到此为止,大概1个月的时间。你已经成为了一名“脚本小子”。那么你还想往下探索吗?
如果你想要入坑黑客&网络安全,笔者给大家准备了一份:282G全网最全的网络安全资料包评论区留言即可领取!
7、脚本编程(初级/中级/高级)
在网络安全领域。是否具备编程能力是“脚本小子”和真正黑客的本质区别。在实际的渗透测试过程中,面对复杂多变的网络环境,当常用工具不能满足实际需求的时候,往往需要对现有工具进行扩展,或者编写符合我们要求的工具、自动化脚本,这个时候就需要具备一定的编程能力。在分秒必争的CTF竞赛中,想要高效地使用自制的脚本工具来实现各种目的,更是需要拥有编程能力.
如果你零基础入门,笔者建议选择脚本语言Python/PHP/Go/Java中的一种,对常用库进行编程学习;搭建开发环境和选择IDE,PHP环境推荐Wamp和XAMPP, IDE强烈推荐Sublime;·Python编程学习,学习内容包含:语法、正则、文件、 网络、多线程等常用库,推荐《Python核心编程》,不要看完;·用Python编写漏洞的exp,然后写一个简单的网络爬虫;·PHP基本语法学习并书写一个简单的博客系统;熟悉MVC架构,并试着学习一个PHP框架或者Python框架 (可选);·了解Bootstrap的布局或者CSS。
网络安全工程师企业级学习路线
视频配套资料&国内外网安书籍、文档&工具
当然除了有配套的视频,同时也为大家整理了各种文档和书籍资料&工具,并且已经帮大家分好类了。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化资料的朋友,可以点击这里获取
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
1.2 路径规划的挑战和技术要求
- 首先,道路环境复杂多变,包括不同类型的道路、交通标志、交通信号等,路径规划算法需要能够适应不同的交通场景。
- 其次,路径规划需要考虑到车辆的动力学约束,如最大加速度、最大转向角等,以确保驾驶的安全性和稳定性。另外,路径规划还需要考虑到实时感知和决策,能够及时应对交通变化和紧急情况。
2.1 Apollo自动驾驶规划技术
Apollo自动驾驶规划技术是基于百度Apollo平台开发的一套规划算法和系统。它的整体架构包括感知模块、定位模块、规划模块和控制模块等。在规划模块中,主要实现了路径规划算法和行为决策算法。
2.2 路径规划算法的基本原理
路径规划算法是Apollo自动驾驶规划技术的核心之一。它的基本原理是根据车辆当前位置和目标位置,结合道路环境和约束条件,通过算法计算出最佳路径。常用的路径规划算法包括A*算法、Dijkstra算法和RRT算法等。
2.3 行为决策算法的基本原理和方法
行为决策算法是Apollo自动驾驶规划技术的另一个重要组成部分。它的基本原理是根据感知模块提供的道路环境信息,通过算法判断当前驾驶状态和交通场景,并做出相应的决策。常用的行为决策算法包括状态机、强化学习和深度学习等。
3.1 多模态规划的概念和意义
多模态规划是指在路径规划中综合考虑不同的驾驶模式和策略,以适应不同的交通场景和驾驶需求。传统的路径规划算法通常只考虑一种驾驶模式,无法适应复杂的道路环境。而多模态规划能够根据不同的驾驶场景,选择合适的驾驶模式和策略,提供更灵活、更智能的驾驶体验。
多模态规划的意义在于优化驾驶过程中的效率和安全性。通过根据道路环境和驾驶需求,选择最佳的驾驶模式和策略,可以提高驾驶效率、减少能耗,并且能够更好地适应不同的交通场景和路况。
3.2Apollo自动驾驶规划技术中的多模态规划实现方式和策略
在Apollo自动驾驶规划技术中,多模态规划的实现方式和策略主要包括以下几个方面:
- 驾驶模式选择:
根据驾驶场景和需求,选择合适的驾驶模式。例如,高速公路驾驶模式、城市道路驾驶模式或者停车模式等。不同的驾驶模式具有不同的行驶策略和约束条件。 - 路径规划策略:
根据驾驶模式和目标位置,选择合适的路径规划策略。例如,对于高速公路驾驶模式,路径规划策略可能更注重快速行驶和减少换道次数;而对于城市道路驾驶模式,则可能更注重避免拥堵和遵守交通规则。 - 速度规划策略:
根据驾驶模式和道路环境,选择合适的速度规划策略。例如,在高速公路驾驶模式下,可以选择更高的行驶速度;而在城市道路驾驶模式下,需要根据交通流量和行人情况等因素,适当降低行驶速度。 - 转向策略:
根据驾驶模式和道路环境,选择合适的转向策略。例如,在高速公路驾驶模式下,可以选择更大的转向角度以快速换道;而在城市道路驾驶模式下,需要更小的转向角度以适应狭窄的道路和复杂的交通情况。
通过以上多模态规划的实现方式和策略,Apollo自动驾驶规划技术能够根据不同的交通场景和驾驶需求,提供更智能、更灵活的驾驶体验,并且提高驾驶效率和安全性。
一、网安学习成长路线图
二、网安视频合集
三、精品网安学习书籍
四、网络安全源码合集+工具包
五、网络安全面试题
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化资料的朋友,可以点击这里获取